Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Synthesis

A Double Dose Of Crystal-To-Crystal Transformations

by Stephen K. Ritter
August 1, 2011 | A version of this story appeared in Volume 89, Issue 31

Examples of chemical reactions that occur in the solid state without disrupting the crystallinity of the original compound are rare, but Cathleen M. Crudden and coworkers of Queen’s University, in Kingston, Ontario, have discovered an unprecedented back-to-back example of such transformations (Angew. Chem. Int. Ed., DOI: 10.1002/anie.201103316). The chemists were exploring why electron-rich rhodium(I) N-heterocyclic carbene complexes resist oxidation to form rhodium(III) complexes. In one reaction they found that treating a dirhodium ethylene complex with a bulky imidazolylidene ligand in an inert nitrogen atmosphere led to a rhodium dinitrogen complex. Subsequently exposing single crystals of this complex to oxygen triggered a color change from yellow to blue, but instead of oxygen oxidizing rhodium, it formed a stable rhodium(I) dioxygen complex. The same thing happened when the researchers subsequently exposed the crystals of the rhodium (I) dioxygen complex to carbon monoxide: The crystals changed color from blue to brown as CO displaced O2. When studying the X-ray crystal structures of the N2, O2, and CO complexes, Crudden’s team was surprised to find that the two nonreversible ligand-exchange reactions had occurred without loss of crystallinity and with only minor effects on molecular arrangement in the crystals. Because CO binds best to the rhodium complex, the researchers believe the complex could be the basis of a CO sensor.

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.