Volume 94 Issue 5 | pp. 36-37 | Perspective
Issue Date: February 1, 2016

Nanochemistry On My Mind

One of the founding fathers of nanoscience reflects on the field’s foundation and predicts its future impact
By Geoffrey A. Ozin
Department: Science & Technology
News Channels: Environmental SCENE, Materials SCENE, Nano SCENE
Keywords: nanochemistry, materials science, nanotechnology, sustainability
[+]Enlarge
SOLAR POWERED
“Nanosolution—Clean Fuel from the Sun,” an artwork by Geoffrey Ozin and Todd Siler depicting the use of solar energy to convert CO2 into liquid fuels, is part of a public engagement project on the benefits and beauty of nanochemistry.
Credit: ArtNano Innovations
A colorful artist’s drawing of the sun overlaid with chemical formulas for converting CO2 into liquid fuels
 
SOLAR POWERED
“Nanosolution—Clean Fuel from the Sun,” an artwork by Geoffrey Ozin and Todd Siler depicting the use of solar energy to convert CO2 into liquid fuels, is part of a public engagement project on the benefits and beauty of nanochemistry.
Credit: ArtNano Innovations

Across the span of my 40-plus-year career, I was fortunate to be involved in the birth and growth of a futuristic field of science that my colleagues and I came to call nanochemistry. The central tenet of nanochemistry is the synthesis of nanoscale materials from the bottom up, literally atom-by-atom. That’s in contrast to sculpting nanostructured materials with a top-down engineering-physics fabrication approach.

Today, nanoscale solids and materials filled with nanoscale voids enable a cornucopia of electronic, optical, magnetic, mechanical, and thermal applications. These advances have benefited from what I call the “nano advantage”—the unique properties exhibited by nanoscale materials that are not displayed by molecules or bulk materials of the same chemical composition.

Chemistry and nanotechnology are now forever united through nanochemistry. And despite the successes in advanced materials and biomedical technologies society has witnessed, it feels like we are only just getting started. What we have achieved so far with nanochemistry is a foundation for developing a new round of futuristic technologies that will allow us to tackle and wisely manage our interrelated energy, food, health, climate, and environmental needs to live in a sustainable world.

Extending Nanochemistry’s Reach

In the midst of creating new materials in the lab, the University of Toronto’s Geoffrey Ozin thought attaining the full potential of nanochemistry would not be complete without public engagement. Ozin’s outreach efforts now include writing “MaterialsViews,” a series of opinion pieces for the Wiley-VCH family of materials journals (www.materialsviews.com/category/opinion). The goal of the series, with 50 articles published to date, is to inform and inspire students, researchers, and the general public on “chemistry-related hot-button issues affecting everyone’s common future.” And in collaboration with artist Todd Siler, Ozin created ArtNano Innovations, a project to “inform the public of the visual beauty of the nanoworld” through multimedia artwork (www.artnanoinnovations.com).

My adventure in nanochemistry began in 1969 as a new assistant professor at the University of Toronto. Those early days were full of monumental scientific and technological breakthroughs that included Sputnik and Apollo 11, DNA, Teflon, the microchip, optical fibers, and lasers. I was inspired by the famous 1959 lecture “There’s Plenty of Room at the Bottom” by California Institute of Technology physicist Richard P. Feynman and the idea of being able to carry out atom-by-atom self-assembly.

The big question, unanswered at the time, was how to use chemistry to prepare and stabilize nanoscale forms of well-known materials, with dimensions in the quantum regime of around 1 nm to 100 nm, and study their size-tunable behavior with an eye toward real-world applications.

Working initially under cryogenic conditions to slow reactions down, and using various in situ analytical techniques, I witnessed naked metal atoms forming nanoclusters. It occurred to me that because these nanomaterials were metastable compared with bulk materials they would have to be protected in some way. One approach was to perform the chemistry within the nanometer-sized voids of a solid material such as zeolites—a strategy coined host-guest chemistry.

Aspects of the work remained frustrating, however. For instance, there was a narrow focus on using zeolites in catalysis, gas separation, and ion exchange. I saw their potential in other areas, such as data storage, batteries and fuel cells, photocatalysis, chemical sensing, and drug delivery. Subsequent discoveries of metal-organic frameworks, covalent-organic frameworks, porous aromatic frameworks, hydrogen-bonded organic frameworks, and porous polymers—today’s leading contenders for gas separation and storage technologies—have enriched the field of nanoporous materials and brought those applications to life.

Another frustration with zeolite hosts is that their 1-nm maximum pore size imposes limits on their imbibed guests, which restricted our ability to work in the 1-nm to 1,000-nm regime. The discovery of mesoporous silica in the early 1990s with pore sizes up to 100 nm gave us a little elbow room. Later on, larger pore sizes up to 1,000 nm became accessible in silica and polymer opals, leading to breakthroughs in developing photonic crystals of wide-ranging compositions that spawned applications in optical telecommunications and tunable photonic color devices.

The new ability to synthesize materials with structural features that traversed all nanometer length scales set the scene for a “panomaterials” revolution. It became possible to produce nanomaterials from organic and inorganic components over all scales, composed of assemblies of 3-D frameworks, 2-D layers, 1-D wires, and 0-D dots, perfect in size and shape down to the last atom. The potential was breathtaking.

[+]Enlarge
Geoffrey A. Ozin is Distinguished University Professor at the University of Toronto and is considered the “father of nanochemistry.”
Credit: Courtesy of Geoffrey Ozin
Photo of Geoffrey Ozin.
 
Geoffrey A. Ozin is Distinguished University Professor at the University of Toronto and is considered the “father of nanochemistry.”
Credit: Courtesy of Geoffrey Ozin

There’s now a rich opportunity to take the nanochemistry knowledge we have cultivated and apply it to today’s pressing problems. One example is developing new materials that enable global energy technologies to capture CO2 and convert it to fuels that will help replace fossil resources and ameliorate climate change.

Here, a prescient quote from a 1971 Life magazine interview with architect and inventor Richard Buckminster Fuller is worth recalling: “Pollution is nothing but resources we’re not harvesting. We allow them to disperse because we’ve been ignorant of their value. But if we got onto a planning basis, the government could trap pollutants in the stacks and spillages and get back more money than this would cost out of the stockpiled chemistries they’d be collecting.”

The nanochemistry needed to achieve that vision will require new adventurous cross-disciplinary torchbearers to seek out and discover innovative materials solutions. Learning how to exploit the “nano advantage” to enable advances with a high likelihood of widespread use by society is a monumental idea just as alive today as it was for me in 1969.

Beyond carbon capture and utilization and safer and more secure renewable energy, a few other “holy grails” come to mind as being ripe for nanochemistry solutions: next-generation information technology; improved health care in the developing world; safety from terrorism; water purification and desalination; pollution prevention and reduction; better nutrition and crop protection; and autonomous nanomachines for medical diagnosis, intracellular drug delivery, and surgery. Let’s see what we can do.


Views expressed on this page are those of the author and not necessarily those of ACS.


Share your ideas for innovative new nanomaterials and nano-advantaged applications (below).

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society
Comments
Professor Graham Allan (Mon Feb 15 15:14:56 EST 2016)
Too bad the article did not mention that the nanoporous structure of natural and abundant cellulose fibers with an internal volume of about 2 mL/g consisting of pores ranging in size from less than 1 nm up to 30 nm. This structure enables nanocrystals to be readily synthesized within these pores. The Fiber & Polymer Group at the University of Washington in Seattle first reported this reaction within constricting pores in Nature magazine in 1970 with the Jack-in-the-Box effect. Subsequently, a variety of nanosized materials inside pores were described in a series of publications, theses and US Patents. Most recently in Cell. Chem. Tech. the UW group reported the synthesis of intrafiber nanocrystals of the semiconductor CdS, a known catalyst for for the generation of hydrogen from water and sunlight.
Leave A Comment