ADVERTISEMENT
2 /3 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Materials

Mechanochemistry enables 17O labeling

Grinding reagents with isotope-enriched water reduces cost and time to get compounds ready for NMR

by Jyllian Kemsley
May 29, 2017 | APPEARED IN VOLUME 95, ISSUE 22

Oxygen-17 NMR spectroscopy is one tool that chemists can use to study the structure and reactivity of various organic and inorganic compounds. But 17O’s low natural abundance—merely 0.04%—requires enriching samples with the isotope, a process that is often costly and time-consuming.

One solution to the challenge of 17O labeling may be mechanical: Combine a reagent with a stoichiometric amount of 17O-enriched water and grind the mixture in a ball mill, suggests a team led by Danielle Laurencin of the Institut Charles Gerhardt Montpellier (Angew. Chem. Int. Ed. Engl. 2017, DOI: 10.1002/anie.201702251).

Grinding reagents in a ball mill to induce reactions is a form of mechanochemistry that has gained popularity in recent years as a relatively quick and convenient way to make some organic and inorganic compounds. As the balls collide in the mill, effects such as shear stress and increased temperature may help stimulate chemistry at the interfaces between particles.

Laurencin and colleagues produced 17O-enriched metal oxides by combining a metal hydroxide with less than two equivalents of 17O-enriched water, grinding the reagents for 30 minutes, then heating the material to convert it to the metal oxide. Enriching 60 mg of Mg(OH)2 or Ca(OH)2 to 17O levels suitable for solid-state NMR analyses cost the team about $10.

For 17O NMR of organic compounds, the researchers focused on carboxylic acids, which frequently turn up in biomolecules and metal ligands, such as those in metal-organic frameworks. The researchers first ground the organic compounds with 1,1’-carbonyl-diimidazole to activate the carboxylic groups and then milled the material with 17O-enriched water. The whole procedure took less than two hours.

X

Article:

This article has been sent to the following recipient:

Leave A Comment

*Required to comment