ERROR 1
ERROR 1
ERROR 2
ERROR 2
ERROR 2
ERROR 2
ERROR 2
Password and Confirm password must match.
If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)
ERROR 2
ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.
Researchers led by Edward H. (Ted) Sargent of the University of Toronto have built the first colloidal quantum dot solar cells certified to convert sunlight into electricity with greater than 10% power conversion efficiency (Nano Lett. 2016, DOI: 10.1021/acs.nanolett.6b01957). Although quantum dots have played a role in solar cells with efficiencies better than 11%, the nanoscopic spheres in those cases are used only as a light-absorbing material, says Oleksandr Voznyy, a researcher in Sargent’s group. The new cells use thin films of lead sulfide quantum dots deposited from solution as light-sensitive layers that also conduct electric charges between electrodes. Using these multitasking quantum dots unlocks simpler design approaches for this brand of solar cell, but the team will need to continue improving the efficiency to compete with or complement other promising materials, such as perovskites, Voznyy says. To beat the 10% benchmark, the researchers tweaked the surface chemistry of their quantum dots. The dots were initially capped with oleic acid to prevent clumping. But the organic compound traps charges, which undermines efficiency. By adding methylammonium iodide to the quantum dot solution before deposition, the team swapped out oleic acid for iodine, which inhibits charge trapping.
Join the conversation
Contact the reporter
Submit a Letter to the Editor for publication
Engage with us on Twitter