Periodic graphics

A collaboration between C&EN and Andy Brunning, author of the popular graphics blog Compound Interest

More online
To see more of Brunning’s work, go to compoundchem.com.
To see all of C&EN’s Periodic Graphics, visit cenm.ag/periodicgraphics.

SOAP VERSUS BODY WASH

Soap and body wash both clean in the same way but use different substances to do so. Here, we take a look at the chemical similarities and differences between the two.

COMMON CHEMISTRY

Soaps and body washes contain surfactants. These are molecules with one end that dissolves in water (hydrophilic) and another that dissolves in oils and grease (hydrophobic).

HYDROPHOBIC

HYDROPHILIC

Surfactants lower the surface tension of water, creating foam, and emulsify oils and grease so they can be washed away.

SKIN pH 4.5–5.5

Soap pH 8.0–11.0

Body Wash pH 4.0–6.0

Skin pH is slightly acidic. Soap is alkaline and can have a drying effect, while body washes have a pH closer to skin’s.

SOAP

Reacting fats or oils (triglycerides) with water-soluble bases generates soap surfactants and glycerol, a useful by-product.

BASE

NaOH or KOH

SOAP

Na⁺ \(\text{O}^- \text{O}^{-} \text{O}^- \text{R}^1 \text{R}^2 \text{R}^3 \)

GLYCEROL

\(\text{OH} \)

TRIGLYCERIDE

\(\text{R}^1, \text{R}^2, \text{R}^3 = \text{chains containing 15–19 carbons} \)

Using sodium hydroxide as the base creates solid soaps, such as sodium stearate. Using potassium hydroxide creates liquid soaps.

SODIUM STEARATE

Hard water plus sodium stearate creates soap scum (calcium and magnesium stearates).

BODY WASH

Body wash and shower gels often use salts of lauryl sulfates and laureth sulfates as primary surfactants.

SODIUM LAURETH SULFATE

Cetyl or stearyl alcohol additives can give body washes an opaque appearance. Glycerol stearate produces a pearlescent effect.

CETYL ALCOHOL

GLYCOL STEARATE

© C&EN 2018 Created by Andy Brunning for Chemical & Engineering News