GASES FOR SCUBA DIVING

To breathe underwater, divers need an air supply. But this air doesn’t always have the same composition as what we breathe above water. Here, we look at the reasons why.

DIVING AIR MIXES

<table>
<thead>
<tr>
<th>Air</th>
<th>Nitrox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Gases</td>
<td>1%</td>
</tr>
<tr>
<td>Oxygen</td>
<td>21%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>78%</td>
</tr>
</tbody>
</table>

DIVING AND THE BENDS

As divers descend, the pressure on their bodies increases, and so does the solubility of gases they breathe.

- **0 m** 1 atm
- **10 m** 2 atm
- **20 m** 3 atm
- **30 m** 4 atm
- **40 m** 5 atm

Nitrogen can dissolve in divers’ blood and tissue. If divers ascend too quickly, the gas forms bubbles, causing the bends. This condition can lead to nerve problems, blood clots, and death.

The air that humans normally breathe can be safe to a depth of 40 meters. Beyond this, nitrogen can have a narcotic effect and cause the bends.

Lower N₂ content reduces the risk of the bends, enabling longer dive times. Nitrox comes in a range of mixes and is typically used for shallow dives.

HELIOX

- **Heliox 80/20**
 - Oxygen: 20%
 - Nitrogen: 80%

Replacing N₂ with helium avoids N₂’s narcotic effects at depths over 50 meters. Helium is also easier to breathe at greater depths.

TRIMIX

- **Trimix 18/45**
 - Oxygen: 18%
 - Nitrogen: 37%
 - Helium: 45%

Replacing some N₂ and oxygen with helium prevents narcotic effects and O₂ toxicity. Mixes with less O₂ and N₂ are used for the deepest dives.

© C&EN 2018 Created by Andy Brunning for Chemical & Engineering News