Latest News
Web Date: January 20, 2012

Sorting Cells From Whole Blood

Medical Diagnostics: A microfluidic device that separates rare cells could help diagnose cancer
Department: Science & Technology
News Channels: Analytical SCENE, Biological SCENE
Keywords: microfluidics, MACS, magnet-activated cell sorting, blood, diagnostics, cancer, stem cells, lab on a chip
[+]Enlarge
Cell Sorter
Magnetically tagged cells (white circles) flow through a channel (in the direction of the arrows) in a microfluidic device. They move into the center stream when a magnetic field is applied, while untagged cells (red circles) stay on the sides.
Credit: Anal. Chem.
Diagram of a microfluidic magnetic cell sorter
 
Cell Sorter
Magnetically tagged cells (white circles) flow through a channel (in the direction of the arrows) in a microfluidic device. They move into the center stream when a magnetic field is applied, while untagged cells (red circles) stay on the sides.
Credit: Anal. Chem.

Finding one cancer cell floating in a sea of a billion blood cells is like searching for the proverbial needle in a haystack. But now researchers have shown that they can efficiently sort rare cells from whole blood using a microfabricated lab on a chip (Anal. Chem., DOI: 10.1021/ac2022844).

Because tumors shed cells that circulate in the bloodstream, scientists have been developing ways to detect and characterize those cells. Such methods would help both diagnose disease and monitor a patient’s progress during treatment. But because the cells circulate in such small numbers, it’s challenging to find and sort them from a blood sample.

Shashi Murthy of Northeastern University and colleagues miniaturized a well-established technique called magnet-activated cell sorting, or MACS. In MACS, microscopic magnetic beads attached to antibodies tag the desired cells. The sample then runs through a magnetic field to separate tagged from untagged cells. Shrinking MACS, says Murthy, makes it “a lot more practical and sensitive at same time.”

Murthy and his colleagues first did calculations that modeled the movement and behavior of magnetically tagged cells in a microfabricated MACS device. They then based the design of their device, which is the size of a business card, on the calculations.

The researchers tested their device on whole human blood spiked with magnetically tagged breast cancer cells at a concentration of 50 cells per mL, a level at the lower end of reported concentrations of patients’ circulating cancer cells. The device was able to recover 95% of the cells.

As long as doctors know of antibodies that can affix the magnetic tags to particular cancer cells, the microfluidic cell sorter could find use diagnosing cancer at an early stage, when just a few cancer cells are circulating in the blood, Murthy says. It could also collect rare cells for researchers to culture in the lab, since the cells come out alive and intact. Murthy’s team showed that their device can separate stem cells from blood for use in treatments or in the lab.

Samuel Forry, an analytical chemist at the National Institute of Standards and Technology, admires the device’s rational design, which he says should allow numerous applications: Researchers could adapt the system to separate cells in saliva or lymph fluid, for example. “Shashi’s group has taken a very strong engineering approach to this clinically relevant question,” he says.

What’s more, Forry says, the device should be easy and economical to use. Some of the parts are disposable, he notes, while others, which are more expensive to fabricate, can be reused. “The end product is very approachable for non-experts to use,” he says.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society
Comments
Youli Zu, MD., PhD. (Mon Feb 13 11:19:14 EST 2012)
excellent work. what is the throughput, seconds, minutes, or hours per ml of blood?

Best regards,

Youli
_______________________________

Youli Zu, MD., PhD.
Co-Director of Hematopathology Section
Department of Pathology and Genomic Medicine
The Methodist Hospital (TMH)
Director of Cancer Pathology
The Methodist Hospital Research Institute (TMHRI)
Associate Professor
Weill Medical College of Cornell University
6565 Fannin, MS205
Houston, TX 77030
Tel 713-441-4460 (TMH)
Tel 713 441-7358 (TMHRI)
Fax 713-441-1565
go to www for Clinical interests:
Dr. Botlagunta Mahendran (Mon Jan 12 08:51:33 EST 2015)
Dear Sir,

My name is Dr. Mahendran, working as an Assistant Professor at KL University, Vijayawada, Andhra Pradesh, India. As a part of our research we are interested to study the following objectives.

1) Isolation and characterization of tumor cells from Leukemia patients in Southern part of India
2) Identification of drug resistant circulating tumour cells (CTCs) from breast and brain cancer patients
3) Can we develop a customized therapy for Indian cancer patients

Therefore, I kindly request you to share your devise with us either for collaborative research

Leave A Comment