• This week’s selections are from the ACS national meeting, which took place on April 7–11 in New Orleans.
0
Facebook
Volume 91 Issue 15 | p. 20 | Concentrates
Issue Date: April 15, 2013

Making Amines And Alcohols Enantioselectively

ACS Meeting News: Simple organic molecules catalyze reaction of unsaturated organoboron reagents with imines and carbonyls
Department: Science & Technology
News Channels: Organic SCENE
Keywords: amine, alcohol, enantioselective, allylboronic ester, organic catalyst, valine

Chiral amine and alcohol functional groups dominate the landscape of biologically relevant molecules, such as drugs and agrochemicals. So chemists are always on the lookout for ways to make such moieties. Chemists at Boston College, led by Amir H. Hoveyda and his team, which includes graduate student Daniel L. Silverio, have come up with a simple way to synthesize amines and alcohols enantio­selectively (Nature, DOI: 10.1038/nature11844). The reaction adds an allyl group, from an allylboronic ester, to an activated imine (shown) or to an electron-deficient carbonyl. The key component in the transformation is an organic catalyst that orchestrates the enantioselective carbon-carbon bond-forming reaction. The researchers prepare the catalyst from the abundant amino acid valine in just four steps through the use of inexpensive reagents. As little as 0.25 mol% is all that’s needed of the catalyst to produce allylamines and allyl alcohols in more than 85% yield with high enantioselectivity. Furthermore, the reaction takes place in common solvents at room temperature in less than six hours. The team now aims to use this catalyst system to develop other efficient and enantioselective C–C bond-forming reactions.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society