Control Over Carb Sulfation In Cells | December 13, 2004 Issue - Vol. 82 Issue 50 | Chemical & Engineering News
Volume 82 Issue 50 | p. 8 | News of The Week
Issue Date: December 13, 2004

Control Over Carb Sulfation In Cells

Work could lead to better understanding of sulfation in disease
Department: Science & Technology

MOLECULAR BIOLOGY

[+]Enlarge
MATCHMAKER
Rapamycin brings together two binding proteins, FKBP and FRB, by binding to both. This, in turn, brings together Loc and Cat, two parts of sulfotransferase. Cat then catalyzes the addition of sulfates (stars) to carbohydrates (squiggles), which are exported to the cell surface.
Credit: 2004 NATIONAL ACADEMY OF SCIENCES
8250notw7na
 
MATCHMAKER
Rapamycin brings together two binding proteins, FKBP and FRB, by binding to both. This, in turn, brings together Loc and Cat, two parts of sulfotransferase. Cat then catalyzes the addition of sulfates (stars) to carbohydrates (squiggles), which are exported to the cell surface.
Credit: 2004 NATIONAL ACADEMY OF SCIENCES

Researchers have seized control of the machinery for carbohydrate sulfation, a common type of sugar modification. The new technique could facilitate studies of the effects of carbohydrate sulfation levels and modification sites on development, disease, and other processes.

Carbohydrates are often modified with sulfate groups in the Golgi apparatus, a process catalyzed by sulfotransferases, and are then routed to their final cellular destinations. Chemistry professor and Howard Hughes Medical Institute investigator Carolyn R. Bertozzi and coworkers at the University of California, Berkeley, have now devised a small-molecule approach for controlling sugar sulfation [Proc. Natl. Acad. Sci. USA, 101, 16715 (2004)].

They divide a sulfotransferase into two parts--one containing a localization domain (Loc) that directs the enzyme to the Golgi membrane, and one containing the enzyme's catalytic center (Cat). They then create genes for two conjugates: Loc-FKBP, combining Loc and FK-506 binding protein; and Cat- FRB, a combination of Cat and FKBP-rapamycin binding protein.

Cells lacking endogenous sulfotransferase activity are genetically modified to express the two conjugates. The small molecule rapamycin can bind FKBP and FRB, so when added to the cells it brings FKBP and FRB together. This also brings the Loc and Cat domains together, turning on Golgi-based sulfation. The sulfation level is tunable: The more rapamycin you add, the more sulfation you get. Bertozzi and coworkers are currently collaborating to extend the technique from cells to whole animals such as mice.

"This is an exciting technique that promises to reveal new insights about how cells control a chemical process essential to life," says carbohydrate specialist Pamela A. Marino at the National Institute of General Medical Sciences, which helped fund the work. "We can begin to see how it may lead to practical benefits for human health."

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment