Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Policy

Science for Sale

Interactions between academia and businesses could affect the future of scientific research

by John D. Roberts
March 24, 2008 | A version of this story appeared in Volume 86, Issue 12

The Perils, Rewards, and Delusions of Campus Capitalism,
[+]Enlarge
by Daniel S. Greenberg, University of Chicago Press, 2007, 311 pages, $25 hardcover (ISBN 978-0-226-30625-4)
by Daniel S. Greenberg, University of Chicago Press, 2007, 311 pages, $25 hardcover (ISBN 978-0-226-30625-4)

Daniel Greenberg is a well-known investigative reporter of science, and his current book deals with bitter and divisive controversies over the role of research universities in societal and commercial arenas. His modus recalls insistent advice given by the Watergate source Deep Throat to Washington Post reporters Bob Woodward and Carl Bernstein: "Follow the money!"

The money theme is strongly coupled to "relevance," where relevance as used here refers to an important factor in the awarding of funds for scientific or engineering research. The problem with relevance is that it raises the question, relevant to whom? For example, evidence that global climate change is connected with human activity is relevant to many people. Evidence to the contrary is relevant to others. When society finally pushes to do more than hand-wringing about global climate change, billions, perhaps in the long run trillions, of dollars can be made from either outcome.

Needless to say, with financial stakes so high for and against global-climate-change research, money is widely used by dueling participants as a weapon. It's used to advertise, lobby, influence vocal sycophants to preach, and try to draw on highly respected research universities to provide plausible expertise to influence the fray's outcome in one way or the other. So "follow the money" becomes quite relevant in awarding large grants to universities for climate-change research.

Greenberg's Science for Sale: The Perils, Rewards, and Delusions of Campus Capitalismbook, which is organized into three parts, starts with this sentence in the Introduction, "In all cases, money drives the engine of a university." In part 1, he is more specific: "On money matters, all of these [research] universities are puzzling and contradictory organizations. Virtually all describe themselves as hard-pressed financially, even as they ingest colossal sums from a variety of sources, accumulate huge endowments, and operate on enormous budgets." One can argue that "colossal," "huge," and "enormous" may apply to just a few research universities, but one cannot dismiss them altogether.

University-industry joint research projects are special Greenberg targets because of potential conflicts of interest between traditional university values and commercial interests. As an example, the author tells us, "In 2002 Stanford University launched a Global Climate and Energy Project, priced at $225 million over 10 years. ExxonMobil, a declared disbeliever in global climate change and generous angel for right-wing think tanks, was chief sponsor and donor of up to $100 million for the project." Other contributors were General Electric, Toyota, and Schlumberger, all of which had some interest in the outcome, but not necessarily in the same way as ExxonMobil, which elicited a comment at the time that the petroleum company was trying to "greenwash its environmental reputation" for a sum about equivalent "to its paper-clip budget."

Of course, Stanford offered assurances "that their project would respect traditional scientific and academic values," and indeed, if there have been difficulties in the ensuing six years, they are not reported by the author. Still, constitutionally suspicious readers will worry that the amount of money involved could lead to trouble when an extension is negotiated if ExxonMobil should become displeased with the project achievements. A similar arrangement for climate-change research was reported by C&EN in 2007 between the University of California, Berkeley, and British Petroleum for $500 million, which seems to mandate that a contingent of BP personnel be stationed on campus. A further Berkeley-Dow research agreement was more recently reported in C&EN. Both agreements have received considerable criticism from Berkeley faculty and others as being inappropriate to the university's basic educational mission.

It should not be assumed that such university-industry arrangements are suddenly new or unique. In California Institute of Technology's early days (1925-35), a building was built and important research was done for Southern California Edison Co. through a collaboration of Caltech's electrical engineers and Edison on high-voltage power transmission lines. Starting in 1926, through the Guggenheim Aeronautical Laboratory led by famed aerodynamicist Theodore von Kármán, Caltech worked with aircraft companies using an industry-funded wind tunnel on campus, with great benefit to the participants. In the 1930s, Caltech physicists collaborated with the medical profession on the use of high-energy radiation to treat cancers.

Around 1980, Caltech's Carver Mead created an industry consortium with leading electronics companies to research architectures for large-scale arrays of integrated silicon transistors. This project had a difficult gestation associated with intellectual property rights until Mead got the participating companies to finesse the issue. Unlike with other such collaborations, Mead decided when enough was enough and moved on to other things. If ethical concerns were voiced at that time or later about these projects at Caltech, they were minor enough, or so far in the past, as to not be reported by Greenberg.

Greenberg gives excellent attention to the Bayh-Dole Act of 1980. Bayh-Dole came about because of legal ambiguity concerning the ownership of patents created in universities using federal research support from agencies with their own policies respecting patent ownership. To solve this problem, Bayh-Dole was passed and is still in effect.

Many readers may be unaware of the specifics of this almost 30-year-old act, so what is involved? The author starts with an excerpt from the act: "It is the policy and objective of the Congress to use the patent system to promote the utilization of inventions arising from federally supported research or development ... [and] ... to promote collaboration between commercial concerns and nonprofit organizations, including universities."

Greenberg then says: "At that pace of growth and financial level ... [billions per year] ... science spending became conspicuous and politically interesting. Scientific inquiry as a manifestation of the human spirit is an inspiring notion, but politicians wanted tangible results, not just arcane research papers."

The act gives universities ownership of patents generated by federal support but allows the government royalty-free rights to use of the patents. At the same time, the scientist(s) whose work created the patents could arrange with their universities to start spin-off companies and enrich themselves, if successful, by either selling out to a larger company or, in the style of Microsoft and Google, growing their companies to extreme value.

Bayh-Dole mandates that patents generated with government support be offered to commercial interests. Just how strongly this and other provisions of the act are enforced is uncertain, but it is clear that, if unheeded, serious legal complications could result. One outcome has been the growth of technology-transfer offices in almost every university with a research program in science and/or engineering.

Greenberg is vitriolic over the Association of University Technology Managers (AUTM) for overblowing the success of technology transfer as mandated by the Bayh-Dole Act. Greenberg says sarcastically, "In AUTM's version of the story, the Bayh-Dole Act is an unalloyed success, undeserving of the reservations and criticisms by theory-blinkered economists and antediluvian purists ... nostalgically on a long-ago gentlemanly era of science."

Whether or not such sarcasm is warranted, it is a fact that relatively few technology-transfer offices produce large returns, and the patent, legal, and other expenses of these offices can minimize or outweigh returns. Although early on AUTM emphasized the financial gains to be achieved in technology transfer, it and the universities are now converted to extolling the broad societal gains rather than desired financial outcomes. Nonetheless, the author reports in detail on Washington University in St. Louis and Georgia Institute of Technology as prime examples of institutions that have thoroughly embraced the new reality of tech transfers and that profit financially from them.

As for "follow the money," Greenberg describes situations where ethical concerns, conflicts of interest, legal battles, unauthorized or authorized advertising statements implying university endorsement for particular uses of licensed patents, and the like have tarnished great institutions or affected involved faculty. Several cases detailed by the author will be found by the interested reader to include such examples as Novartis/Syngenta with Berkeley, Johns Hopkins University and a skin care product, and large consulting contracts for senior NIH personnel with pharmaceutical companies.

Part 2 of Greenberg's book takes a different tack in which 70 pages of interesting material, well worth reading, have been gleaned from six veterans of the technology-transfer revolution. Most of the interviews are two or more years old, and minds may not be the same today. Included are bitter remarks by chemistry professor Robert Holton of Florida State University on dealing with pharmaceutical companies with regard to Taxol; a different experience with professor Robert M. Dickson of Georgia Tech on imaging techniques, with a surprise ending to an open conversation; professor William S. Wold with conflict of interest in biomedical research at Saint Louis University; Timothy Mulcahy, then of the University of Wisconsin, Madison, on internal university relations associated with tech-transfer activities; and a conversation with Drummond Rennie, who has been connected with the New England Journal of Medicine and the Journal of the American Medical Association, with deep concerns for possible bias in reporting on tests of the efficacies of drugs, where the authors represent institutions or others who have financial interests in those tests.

The final part of the book consists of two essays: "What's Right and Wrong, and How To Make It Better" and a tasteless parable of the exploits of "Grant Swinger." The first essay confronts scientific fraud, which embarrasses the scientific community even though-considering the yearly volume of published papers—high—profile cases, mostly driven by failures to reproduce important experimental results, are relatively few. The level to which small fudges occur in published data can hardly be expected to be known. However, this essay deals mainly with "wrongs," which range over topics already discussed or alluded to. Substantial criticism is also directed toward the unwillingness of the University of Pennsylvania to reveal its financial agreements with industrial sponsors, which makes it difficult to "follow the money."

Justification for such practices is easily constructed, but is this the proper stance for either public or private universities to take? It is now mandatory for many journals to include footnotes with information about conflicts of interest with regard to the subject matter of submitted papers, but Greenberg notes a trend to ignore regulations about conflicts of interest. He reports that in a study of 3,200 scientists, many said they had changed details of their papers as a result of persuasion from a funding source.

Among corrective measures for conflicts of interest, one procedure adaptable from information technology is "open source" collaborations through which intellectual property will be free for academic and commercial uses. In such arrangements, the universities do not own patents and avoid many problems. To extend open source to pharmaceutical research is a different matter, but Greenberg suggests that changes in the patent system itself could have many advantages. Other measures could include the aforementioned need for transparency of agreements between industry and universities, tightened internal scrutiny by universities of their own research operations, and continued efforts of journal editors to stem the tide of deceit in research publications.

This reviewer was disappointed with part 1, which was highly critical of the compensation of university presidents, even though their levels of compensation are hardly commensurate with upper-level industrial management. One should expect that university presidents are likely to have more workhours and a greater variety of responsibilities than company CEOs. Universities and their biology departments are also strongly criticized for not being able to provide tenure-track positions until postdoctoral fellows reach their late 30s or early 40s. But the author fails to recognize that biology and other sciences are victims of their own success. Success here means wonderful science to work on and capable postdoctoral fellows, but they are too many to be easily assimilated by the number and sizes of existing academic departments and facilities. Yet in other places in the book, the author sharply criticizes universities for pushing to keep expanding.

The book is clearly an interesting read, even if it may raise temperatures under the collars of many company personnel and the faculty and university administrators with high stakes in technology transfers.

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.