Volume 87 Issue 29 | p. 37 | Concentrates
Issue Date: July 20, 2009

Microfluidic Device Mimics Golgi Organelle

Chip with multiple reservoirs for different enzymes functions just like the little-understood cellular component in carrying out glycosylations
Department: Science & Technology
Keywords: digital microfluidics, Golgi organelle, glycosylation, heparan sulfate
This digital microfluidic device (14 x 17 mm), made up of enzyme-containing square reservoirs connected by a series of electrodes (small squares) to move droplets, mimics a Golgi organelle.
Credit: J. Am. Chem. Soc.
8729scon_microfluidic
 
This digital microfluidic device (14 x 17 mm), made up of enzyme-containing square reservoirs connected by a series of electrodes (small squares) to move droplets, mimics a Golgi organelle.
Credit: J. Am. Chem. Soc.

A research team led by Robert J. Linhardt of Rensselaer Polytechnic Institute has created a microfluidic prototype of an artificial Golgi organelle that mimics part of the little-understood cellular component’s role in the posttranslational protein glycosylation process (J. Am. Chem. Soc., DOI: 10.1021/ja903038d). The researchers are using the droplet-based digital device to study the enzymatic modification of the polysaccharide heparan sulfate immobilized on magnetic nanoparticles. In cells, this glycosylation process involves a series of enzymes, including N-deacetylase/N-sulfotransferase; C5 epimerase; and 2-, 6-, and 3-O-sulfotransferases (OSTs). Linhardt’s team is focusing on one part of the series, using D-glucosaminyl 3-OST to generate heparan sulfate with increased affinity for antithrombin III, an anticoagulation protein. The researchers suggest that the device, which has multiple reservoirs for holding different enzymes, could provide a platform for high-throughput synthesis of glycosaminoglycans for biological and pharmacological applications and for designing biosynthetic versions of the anticoagulant heparin.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment