Unprecedented Iridium(VIII) Seen | July 20, 2009 Issue - Vol. 87 Issue 29 | Chemical & Engineering News
Volume 87 Issue 29 | p. 38 | Concentrates
Issue Date: July 20, 2009

Unprecedented Iridium(VIII) Seen

Despite theoretical predictions to the contrary, IrO4 featuring an 8+ iridium center can exist, at least in a low-temperature solid matrix
Department: Science & Technology
Keywords: iridium tetraoxide, matrix-isolation infrared spectroscopy
[+]Enlarge
Ir(VIII)O4 is formed stepwise in the solid state by sequentially irradiating precursor isomers with infrared and visible light.
Credit: Sebastian Riedel
8729scon_iridium
 
Ir(VIII)O4 is formed stepwise in the solid state by sequentially irradiating precursor isomers with infrared and visible light.
Credit: Sebastian Riedel

Despite theoretical predictions that iridium is limited to a maximum oxidation state of 7+, a group led by Mingfei Zhou of Fudan University, in Shanghai, and Sebastian Riedel of Albert Ludwigs University, in Freiburg, Germany, has experimentally observed IrO4 featuring an 8+ iridium center (Angew. Chem. Int. Ed., DOI: 10.1002/anie.200902733). The researchers formed the compound by codepositing iridium with O2 and a noble gas onto a CsI surface at 4 to 6 K. After annealing the sample to 30 K, they used infrared spectroscopy to detect (η1-O2)IrO2, where (η1-O2) represents the end-on arrangement O–O–IrO2. Irradiating the sample with infrared light produced (η2-O2)IrO2, where η2-O2 indicates a side-on bound O2 (forming a three-membered IrO2 ring). Further irradiation with visible light produced the complex identified as IrO4, which has four terminal Ir=O bonds. Computational analysis indicates that the latter compound is a d1 species with the formal iridium oxidation state of 8+. That the molecule can exist, at least at low temperature, is likely due to the comparably low steric repulsions of the four divalent oxo ligands combined with the relatively large electronegativity of oxygen, the researchers say.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment