Volume 90 Issue 17 | p. 33 | Concentrates
Issue Date: April 23, 2012

Phosphoric Acid Transfers Protons Cooperatively

Study may lead to improvements in proton-conducting fuel-cell electrolytes
Department: Science & Technology
Keywords: proton transfer, proton conduction, hydrogen bond, phosphoric acid, H3PO4, molecular dynamics

High proton conductivity in liquid phosphoric acid arises from concerted transfer across chains of H3PO4 molecules rather than through individual transfer events (Nat. Chem., DOI: 10.1038/nchem.1329). Neat liquid phosphoric acid has the highest known intrinsic proton conductivity, and understanding the mechanism may help improve proton-conducting fuel-cell electrolytes. In the new work, a team led by Mark E. Tuckerman of New York University and Klaus-Dieter Kreuer of Germany’s Max Planck Institute for Solid State Research used ab initio molecular dynamics simulations to study proton transfer in liquid phosphoric acid. They found that transfer occurs in a cooperative manner across chains of as many as five H3PO4 molecules. This mechanism contrasts with that of proton transfer in water, which happens in discrete steps from one H2O molecule to another with accompanying solvent reorganization. The difference arises from the different hydrogen-bonding networks in the liquids, Tuckerman says. The hydrogen bonds in liquid phosphoric acid are shorter than those in water, making it easier for H3PO4 to auto­ionize. Also, hydrogen bond rearrangement to resolve charge buildup from proton transfer requires only rotation around a P–O bond rather than reorientation of an entire H3PO4 molecule.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment