Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Environment

Splice of Life

Crystal structure reveals workings of self-splicing group I intron

by CELIA HENRY
June 7, 2004 | A version of this story appeared in Volume 82, Issue 23

CUT IT OUT
[+]Enlarge
Credit: © Nature 2004
Crystal structure shows a self-splicing group I intron with its exons (red).
Credit: © Nature 2004
Crystal structure shows a self-splicing group I intron with its exons (red).

A crystal structure of a portion of RNA provides researchers with new insight about a key process along the way to protein synthesis. Before protein synthesis can proceed, noncoding regions (introns) of mRNA must be removed and the coding regions (exons) joined together.

“This is the first structure that includes the complete intron and both exons locked in a conformation relevant for the splicing reaction,” says Scott A. Strobel, professor of molecular biophysics and biochemistry at Yale University. “All exon ligation reactions are chemically equivalent. This is the first time a splicing intermediate of any kind has been visualized.”

The group I self-splicing intron and exons analyzed structurally by Strobel and his colleagues are from the purple bacterium Azoarcus [Nature, published online June 2, http://dx.doi.org/10.1038/nature02642]. They captured the complex by replacing four RNA nucleotides with their DNA analogs, which reduces the splicing activity a millionfold.

“Obviously, splicing must be done precisely, and this structure reveals how the splice sites are selected,” Strobel says. The intron uses novel RNA motifs to select the splice sites. One of the splice sites (at the 3' end) is selected by interactions with the intron’s terminal nucleotide, whereas the other splice site is selected by an extensive network of tertiary interactions.

Strobel and his colleagues find structural evidence for two metal ions, Mg2+ and K+, associated with the active site. K+ seems to serve as a “place holder” for a second Mg2+ because K+ binds to the site in the structure with DNA substitutions but is replaced by Mg2+ in all-ribose structures. “This suggests that Mg2+ is the physiologically relevant catalytic metal ion and might explain why the 2'-deoxy substitution is so inhibitory,” Strobel says.

Advertisement

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.