Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Environment

Nanotube Membranes Desalinate Water

June 23, 2008 | A version of this story appeared in Volume 86, Issue 25

[+]Enlarge
Credit: Francesco Fornasiero & Aleksandr Noy/LLNL
Credit: Francesco Fornasiero & Aleksandr Noy/LLNL

Arrays of densely packed, vertically aligned carbon nanotubes can serve as membranes to filter ions out of water while allowing the water to flow significantly faster than through conventional filters, according to a research team led by Francesco Fornasiero, Aleksandr Noy, and Olgica Bakajin of Lawrence Livermore National Laboratory (Proc. Natl. Acad. Sci. USA, DOI: 10.1073/pnas.0710437105). These nanotube membranes offer a promising technology for desalination, the researchers say. The team created the filtration membranes by embedding nanotubes in a silicon nitride matrix and then uncapping the ends of the tubes by an etching process that also introduced carboxylate groups around tube entrances. The carboxylate groups form a ring of negative charges through which ions must pass to enter the tubes. When the researchers filtered electrolyte solutions, the nanotube membranes rejected as much as 90% of K3Fe(CN)6 and 50% of KCl while maintaining a high flow per unit area. Additional experiments varying the pH of the solutions as well as filtering different salts demonstrated that ion exclusion stems primarily from electrostatic rather than steric effects. In addition to desalination applications, the nanotubes could be useful as models for biological membrane pores, the authors suggest.

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.