Confinement Alters Amine Chemistry | November 24, 2008 Issue - Vol. 86 Issue 47 | Chemical & Engineering News
Volume 86 Issue 47 | p. 36 | Concentrates
Issue Date: November 24, 2008

Confinement Alters Amine Chemistry

Amine groups tethered inside nanosized cages exhibit chemical behavior distinct from their free-floating counterparts, even in acidic solution
Department: Science & Technology
News Channels: JACS In C&EN
Proton Keep-away
Confinement in nanocages leaves amine groups largely unprotonated even in acidic solution, as determined by the types of complexes they form with gold.
Credit: Adapted from J. Am. Chem. Soc.
8647scon_2
 
Proton Keep-away
Confinement in nanocages leaves amine groups largely unprotonated even in acidic solution, as determined by the types of complexes they form with gold.
Credit: Adapted from J. Am. Chem. Soc.

Amine groups confined in nanosized cages exhibit chemical behavior distinct from their unconfined counterparts, according to Northwestern University chemical engineers (J. Am. Chem. Soc., DOI: 10.1021/ja806179j). Harold H. Kung, Mayfair C. Kung, Juan D. Henao, and coworkers prepared porous siloxanes containing 2-nm-diameter cavities in which about eight aminopropyl groups are tethered to the interior surfaces. The team proposed that in near-neutral solutions repulsive electrostatic interactions in the confined space would shift the amine groups' affinity for protons and limit protonation to only one of the eight amine groups. In contrast, about half of the free-floating amine groups in solution would be protonated. The researchers tested this hypothesis by probing the way AuCl4– binds to the amino groups inside the cavity—the binding mode to gold depends on the amines' protonation state. On the basis of spectroscopy studies, the group concludes that even in acidic solution the confined amines form gold complexes that are characteristic of unprotonated amines. The shift in proton affinity thus leaves a large fraction of neutral amines in the cavity available to mediate base-catalyzed reactions even in neutral or acidic media, the team points out.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment