Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Biological Chemistry

Crowding Improves Protein Factories

February 11, 2008 | A version of this story appeared in Volume 86, Issue 6

Modular enzymes called nonribosomal peptide synthetases manufacture many antibiotics and immune suppressants in the biomolecule-packed environment of cells. But the same syntheses under less crowded conditions outside the cell are inefficient, limiting potential biotechnology applications. Zhihong Guo and colleagues at Hong Kong University of Science & Technology have attempted to work around this problem by mimicking the cell's crowded conditions in solution (Org. Lett., DOI: 10.1021/ol7030153). The researchers show that simulated crowding using an inert sucrose polymer prevents an enzyme from releasing premature intermediates during the synthesis of enterobactin, a cyclic peptide that microbes use to acquire iron. Adding the polymer decreased dead end side products to negligible levels, although it didn't lead to an appreciable increase in enterobactin yield. It isn't clear how crowding suppresses the side products, but Guo's team plans to examine possible crowding-induced structural changes in the enzyme.

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.