How Thiols Photoswitch Cyanine Dyes | December 14, 2009 Issue - Vol. 87 Issue 50 | Chemical & Engineering News
Volume 87 Issue 50 | p. 34 | Concentrates
Issue Date: December 14, 2009

How Thiols Photoswitch Cyanine Dyes

Mechanism will aid design of dyes for imaging biological systems with super-resolution fluorescence microscopy
Department: Science & Technology
News Channels: JACS In C&EN
Keywords: super-resolution microscopy, cyanine dyes, photoswitching
8750scicon_dark
 

Certain super-resolution fluorescence microscopy techniques used for biological imaging rely on photoswitching of cyanine dyes. Understanding the mechanism of this photoswitching, in which red laser light switches a dye from a fluorescent to a dark state and subsequent ultraviolet illumination turns the fluorescence back on, could help scientists design improved photoswitchable probes. Using single-molecule imaging and mass spectrometry, Harvard University chemistry professor Xiaowei Zhuang and coworkers tested the role that primary thiols play in facilitating the reaction (J. Am. Chem. Soc., DOI: 10.1021/ja904588g). They propose that the thiol forms a nonfluorescent adduct with the dye, a switching mechanism originally hypothesized by Roger Y. Tsien of the University of California, San Diego, one of the coauthors. Mass spectrometry confirms that the mass difference between the fluorescent and dark states matches the mass of the thiol (β-mercaptoethanol shown). Fragmentation patterns in the mass spectra are consistent with the addition of the thiol to the dye’s polymethine bridge. Such reactivity helps explain why the cyanine dye Cy3, which has a shorter polymethine bridge than Cy5 or Cy7, is unable to switch to the dark state.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment