ERROR 1
ERROR 1
ERROR 2
ERROR 2
ERROR 2
ERROR 2
ERROR 2
Password and Confirm password must match.
If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)
ERROR 2
ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.
It’s not hard to be a perfectionist if you have all the time in the world to do a job right. Guided by that thinking, Northwestern University’s Evelyn Auyeung, Monica Olvera de la Cruz, Chad A. Mirkin, and coworkers have shown that metal nanoparticles tagged with strands of DNA can be coaxed into assembling nearly perfect crystals with predictable geometries simply by cooling the system from a little above to a little below its melting point over the course of several days (Nature 2013, DOI: 10.1038/nature12739). That finding may lead to custom-designed crystals for photonics, electronics, and catalysis applications. Atoms form crystals by way of fairly well understood processes. Not so for molecules and large particles. Previous attempts to use DNA base-pair recognition to form nanoparticle crystals led to ill-formed crystals or ones with unexpected geometries that varied with nanoparticle size. In contrast, the slow-cooling method leads to micrometer-sized faceted crystals with a rhombic dodecahedron shape (shown, with inset rendering of DNA-tagged nanoparticles) regardless of nanoparticle size. That outcome is the thermodynamically favored and theoretically predicted one, the team notes.
Join the conversation
Contact the reporter
Submit a Letter to the Editor for publication
Engage with us on X