Reducing CO2 In Ionic Liquids | Chemical & Engineering News
Volume 92 Issue 21 | p. 41 | Concentrates
Issue Date: May 26, 2014

Reducing CO2 In Ionic Liquids

Study suggests new strategy for enhancing rate and efficiency of catalytic electroreduction of carbon dioxide
Department: Science & Technology
News Channels: Materials SCENE
Keywords: CO2, carbon dioxide, electrochemistry, ionic liquid, electroreduction

Converting CO2 to chemicals and fuels by reducing it electrochemically could be an attractive way to make products from an inexpensive, sustainable, and widely available feedstock. One of the challenges in implementing that process on a large scale is finding a catalyst that mediates that transformation with high activity and little energy input. A study led by David C. Grills and Yasuo Matsubara of Brookhaven National Laboratory may lead to a general strategy to help advance that quest. The team found that CO2 can be reduced efficiently to CO in the solution phase in an electrochemical cell that uses an ionic liquid as the solvent and electrolyte (J. Phys. Chem. Lett. 2014, DOI: 10.1021/jz500759x). Specifically, the team compared the electrochemical behavior of a rhenium bipyridine catalyst in a neat imidazolium tetracyanoborate ionic liquid with its performance in a reference acetonitrile solution. In the ionic liquid, the CO2 reaction proceeds at a substantially lower voltage (0.45 V) and roughly 10 times as fast as it does in the acetonitrile solution.

Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment