Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Physical Chemistry

Terminal Vanadium(III) Oxo Complex Isolated

Elusive species could reveal new proton reduction chemistry

by Jyllian Kemsley
September 8, 2014 | A version of this story appeared in Volume 92, Issue 36

[+]Enlarge
Credit: Michael Nippe/Texas A&M University
In this terminal V3+(O) complex, V is orange, O is red, N is blue, and C is gray.
Structure of the terminal vanadium(III) oxo complex.
Credit: Michael Nippe/Texas A&M University
In this terminal V3+(O) complex, V is orange, O is red, N is blue, and C is gray.

Terminal vanadium(III) oxo species likely play a key role in a number of vanadium-catalyzed reactions, including cleavage of C–C bonds in glycols and naphthol couplings, but chemists have struggled to isolate such a complex. A team led by Christopher J. Chang and Jeffrey R. Long of the University of California, Berkeley, and Mihail Atanasov and Frank Neese of Germany’s Max Planck Institute for Chemical Energy Conversion has now succeeded. The group prepared a terminal V4+(O) complex with a pentadentate polypyridyl ligand, then successfully reduced it to V3+(O) (Inorg. Chem. 2014, DOI: 10.1021/ic5010177). The V3+(O) species is dark blue and has a V–O bond length of 1.621 Å, which is among the longest terminal V–O bonds reported. The V3+(O) complex is unreactive to either hydrogen- or oxygen-transfer reagents, but it protonates to form a transient V3+(OH) species that could lead to new proton reduction chemistry. Computational analysis indicates that efforts to reduce the V3+(O) complex to try to prepare V2+(O) would instead result in transfer of one or two electrons from vanadium to the ligand.

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.