ADVERTISEMENT
2 /3 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Analytical Chemistry

Beetle’s Explosive Spray Mechanism Revealed By X-Ray Imaging

Bioweapon: Pulsed effect driven by chemical reaction

by Jyllian Kemsley
May 1, 2015 | APPEARED IN VOLUME 93, ISSUE 18

[+]Enlarge
Credit: Science
09318-notw4-beetlecxd.jpg
Credit: Science

To fend off predators, bombardier beetles spray a hot, irritating liquid from a gland that behaves like a microscopic chemical reactor. Researchers have now used synchrotron X-ray imaging to reveal details about how the beetles control their built-in weapon (Science 2015, DOI: 10.1126/science/1261166).

[+]Enlarge
Credit: Science
Bombardier beetles (top) produce a hot, irritating spray of benzoquinones from their pygidial glands, shown stained in a micrograph (bottom).
09318-notw4-slidecxd.jpg
Credit: Science
Bombardier beetles (top) produce a hot, irritating spray of benzoquinones from their pygidial glands, shown stained in a micrograph (bottom).

The beetles’ pygidial glands have multiple parts, including a reservoir chamber, a reaction chamber, and an exit channel. The reservoir chamber contains an aqueous solution of 25% hydrogen peroxide, 10% p-hydroquinones, and 10% alkanes. The reaction chamber contains peroxidase and catalase enzymes.

When a beetle goes into defensive mode, it transfers the reservoir fluid into its reaction chamber, where enzymatic reactions produce p-benzoquinones—the irritating component of its spray—along with oxygen and heat. Water vaporizes, pressure builds up, and the spray explodes from the exit channel. For one particular group of bombardier beetles, spray explosions come out at about 100 °C, with a velocity of 10 meters per second and a range of several centimeters. They also pulse as quickly as 700 Hz.

But how the beetles control their complex machinery has been a mystery. The new work “is the first internal experimental analysis of the intricate mechanism used by the beetle,” says Andrew McIntosh, a thermodynamics professor at England’s University of Leeds. McIntosh has studied bombardier beetles but was not involved in the current work. He notes that the study confirms earlier research that suggested valves play a role in the beetle spray explosions.

DEFENSE
Credit: Christine Ortiz/MIT
Synchrotron X-ray video shows a bombardier beetle’s pygidial gland creating and ejecting its irritating spray in pulses. The video was recorded at 2,000 frames/second and plays at 25 frames/second.

The experiments were carried out by Massachusetts Institute of Technology graduate student Eric M. Arndt and professor of materials science and engineering Christine Ortiz, University of Arizona entomology professor Wendy Moore, and Brookhaven National Laboratory scientist Wah-Keat Lee.

The method they developed was to anesthetize a beetle by cooling it down, then use modeling clay to hold it on a mount. “When the beetle warms up, it realizes that it’s fixed in place, so it gets scared” and releases its explosive spray, Ortiz says. The researchers were able to obtain X-ray images of the spray explosions at 30 to 2,000 frames per second.

Muscles within the reservoir chamber contract to push fluid into the reaction chamber. But only a little fluid goes in at a time, in the form of 5-nL droplets, the team found. As soon as fluid enters the reaction chamber, the enzymes within immediately go to work, and the rising pressure serves both to close a valve between the reservoir and reaction chambers and to blast the spray out the exit. Then the reduced pressure allows the valve to reopen for another cycle. “It’s a very efficient way of controlling the pulse explosion,” Ortiz says.

Advertisement
X

Article:

This article has been sent to the following recipient:

Comments
Herman Rutner (May 6, 2015 3:27 PM)
Incredible combination of complex chemical composition, mixing, fluidics of heated fluids, valving and multiple fluid expulsions at high temperature and velocity without killing the beetle as occurs in the far simpler process in the stinging honey bee. How can any rational scientist look at this scenario and still believe it MUST have happened somehow by a simultaneous random process since stepwise or slow evolution would have infinitesimal compound probability of success even over eons.
As a retired industrial R&D scientist, I believe that Darwin's intraspecies adaptation is a true scientific theory whereas both molecular evolution and subsequent interspecies evolutions are mere philosophical ruminations. Regrettably both theories are bundled as proven evolutionary science.
Conrad Stanitski (May 6, 2015 6:28 PM)
It is important that a scientific publication like C&Eng News refrain from using the word "heat" as used in the bombardier beetle story as if heat were an actual substance; heat is not a substance, fluid, etc. The phrase "thermal energy" makes more sense.

Frank Shaw (May 6, 2015 10:38 PM)
This is really neat. I uses the Bombadier Beetle as an example of catalysis in Gen Chem for at least 20 years. This comes a bit late, as I have been emeritus for a few years, but maybe I will use free time to write a book about chemical warfare in nature.
Jeb Taylor (May 7, 2015 9:35 AM)
Thanks for the article
Harmon McAllister (May 28, 2015 7:55 PM)
How can any biological structure resist constant exposure to 20% hydrogen peroxide, let alone synthesize and transport it against a concentration gradient? It's a remarkable system to be sure but that concentration defies reason (or at least my experience with Superoxol).

Leave A Comment

*Required to comment