Sulfide Mineral Reduces CO2 | Chemical & Engineering News
Volume 93 Issue 18 | p. 27 | Concentrates
Issue Date: May 4, 2015

Sulfide Mineral Reduces CO2

Geochemistry: Catalytic reactions produce simple organics common in prebiotic chemistry
Department: Science & Technology
News Channels: Organic SCENE, Biological SCENE
Keywords: Greigite, hydrothermal vents, CO2 reduction, prebiotic

An iron sulfide mineral that forms in deep sea hydrothermal vents can convert CO2 and hydrogen to small bioorganic molecule precursors such as methanol and formic, acetic, and pyruvic acid (Chem. Commun. 2015, DOI: 10.1039/c5cc02078f). The discovery, by Nora H. de Leeuw of University College London and colleagues, provides a potential lead for developing environmentally friendly catalytic syntheses of plastics and fuels. It also lends credence to the theory that prebiotic chemistry flourished in the mineral- and carbon-rich alkaline environment that typifies some hydrothermal vents. Scientists have known that this mineral, greigite (Fe3S4), resembles the ferredoxin center of the CO dehydrogenase enzyme. In previous studies, researchers showed that greigite can convert CO2 to gaseous CH4 and CO. However, to serve as prebiotic precursors, small organics must be in solution. So the team performed experiments at various pH values and found that an alkaline environment was key to producing methanol and the other small organics that are solution-based at atmospheric pressure and room temperature. And by using computational methods, the group explained the dependence of the methanol and formic acid formation mechanisms on alkaline conditions.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment