2015 Presidential Green Chemistry Challenge Awards | July 20, 2015 Issue - Vol. 93 Issue 29 | Chemical & Engineering News
Volume 93 Issue 29 | p. 5 | News of The Week
Issue Date: July 20, 2015 | Web Date: July 16, 2015

2015 Presidential Green Chemistry Challenge Awards

Honors: Annual awards recognize chemical innovations that prevent pollution and promote sustainability
Department: Science & Technology | Collection: Climate Change, Green Chemistry, Life Sciences
News Channels: Environmental SCENE
Keywords: Green Chemistry Awards, green engineering, sustainability, awards

Chemical plants are often vilified for pumping out toxic pollutants from their smokestacks and discharging tainted water from pipes. Environmental laws have gone a long way to curb those problems, but as an added incentive, the Environmental Protection Agency in collaboration with the White House began the Presidential Green Chemistry Challenge Awards in 1996.

This year’s awards were presented on July 13 in a ceremony at EPA headquarters in Washington, D.C. As the name suggests, the awards program challenges chemical companies to do better and recognizes their successes in developing innovative technologies with demonstrable human health and environmental benefits.

Among this year’s winners, LanzaTech took home the Greener Synthetic Pathways Award for developing a microbial fermentation process to convert carbon monoxide and carbon dioxide from steel mill and other industrial waste gas streams into fuels such as ethanol and commodity chemicals such as 2,3-butanediol.

Soltex landed the Greener Reaction Conditions Award for its fixed-bed solid-state catalyst system for manufacturing polyisobutylene, an intermediate used to make additives for lubricants and gasoline. Polyisobutylene is typically synthesized using corrosive liquid formulations of a Lewis acid catalyst such as BF3, which requires costly handling equipment and generates substantial wastewater. Soltex alleviated those problems by creating a BF3-alcohol complex affixed to solid alumina beads.

Hybrid Coating Technologies and Nanotech Industries received the Designing Greener Chemicals Award for creating polyurethane coatings and foam insulation made with cyclic carbonates and amines instead of isocyanates and polyols. Isocyanates are useful chemicals but have long raised safety and health concerns because they are irritants and potential carcinogens.

[+]Enlarge
Algenol’s photobioreactor arrays enable algae living in saltwater to consume carbon dioxide and produce biofuels.
Credit: Algenol
A photo of Alegnol's photobioreactor arrays.
 
Algenol’s photobioreactor arrays enable algae living in saltwater to consume carbon dioxide and produce biofuels.
Credit: Algenol

Renmatix garnered the Small Business Award for its process using supercritical water hydrolysis to deconstruct cellulosic plant material to unlock sugars that can then be used as feedstocks to make biobased fuels and chemicals. The technology offers a cleaner, faster, and more economical alternative to acids, enzymes, and solvents that are typically used to process biomass.

Algenol was given the Climate Change Award for developing genetically enhanced strains of blue-green algae (cyanobacteria) that are highly efficient at producing ethanol and biobased crude oil by feeding on carbon dioxide trapped at industrial facilities. As a bonus, the algae grow in saltwater that can be taken from the ocean rather than using up more precious freshwater resources.

Chemistry professor Eugene Y.-X. Chen of Colorado State University got the nod for the Academic Award for designing greener condensation reactions. These reactions, which fuse molecules together, typically require a metal catalyst and can generate significant waste as unneeded molecule fragments are discarded. Chen’s group developed organocatalysts for derivatizing the biobased feedstock 5-hydroxymethylfurfural and for making polyesters in metal-free, and in some cases solvent-free, processes that are 100% atom-economical.


This article has been translated into Spanish by Divulgame.org and can be found here.


[+]Enlarge
ACADEMIC AWARD
Chen’s green condensation reactions are being applied to the preparation of unsaturated polyesters and to the derivitization of the biobased feedstock 5-hydroxymethylfurfural (HMF).
Chen’s green condensation reactions.
 
ACADEMIC AWARD
Chen’s green condensation reactions are being applied to the preparation of unsaturated polyesters and to the derivitization of the biobased feedstock 5-hydroxymethylfurfural (HMF).
 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment