Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Materials

Far-Out Order In Solvents

Solute effects extend further into solution than previously recognize

by Jyllian Kemsley
January 19, 2015 | A version of this story appeared in Volume 93, Issue 3

Solutes may affect solvent networks over longer distances than previously realized, two separate research teams report. The results will help scientists understand how solvents influence the stability and reactivity of molecules and particles, as well as how those solutes in turn affect the properties of solvents. Mirijam Zobel and Reinhard B. Neder of Friedrich-Alexander University Erlangen-Nuremberg, in Germany, along with Simon A. J. Kimber of the European Synchrotron Radiation Facility, located in Grenoble, France, looked at the effects of colloidal metal and metal oxide nanoparticles on alcohols and hexane using high-energy X-ray scattering (Science 2015, DOI: 10.1126/science.1261412). The nanoparticles were 2.5 to 7 nm in diameter. The researchers found that the nanoparticles induced order distinguishable from bulk solvent as far as 2 nm out from the nanoparticle surface. Matthew J. DiTucci, Sven Heiles, and Evan R. Williams of the University of California, Berkeley, studied gas-phase clusters of Fe(CN)63– in water using infrared photodissociation spectroscopy (J. Am. Chem. Soc. 2015, DOI: 10.1021/ja5119545). They found that a single Fe(CN)63– molecule orients water molecules and influences the hydrogen-bond network out to the surface of clusters involving as many as 70 water molecules. Clusters of that size have a radius of about 0.8 nm from the ion.

STAYING IN ORDER
A diagram that shows part of a zinc oxide nanoparticle and nearby ethanol molecules.
Credit: Science
A ZnO nanoparticle (blue) coated in hydroxyl groups and citrate molecules (yellow/red) induces order in solvent ethanol molecules (green) for several layers beyond the nanoparticle surface.

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.