Amides Succumb To Suzuki–Miyaura Coupling, Thanks To Nickel Catalyst | Chemical & Engineering News
Volume 93 Issue 45 | p. 31 | Concentrates
Issue Date: November 16, 2015

Amides Succumb To Suzuki–Miyaura Coupling, Thanks To Nickel Catalyst

Organic Chemistry: Abundant metal opens new avenues in popular reaction pathway
Department: Science & Technology
News Channels: Organic SCENE
Keywords: Suzuki–Miyaura coupling, nickel, amide

The first nickel-catalyzed Suzuki-Miyaura coupling using an amide derivative as a cross-coupling partner has been reported by chemists at UCLA (Nat. Chem. 2015, DOI: 10.1038/nchem.2388). Suzuki-Miyaura couplings are wildly popular for forging C–C bonds: The prototype reaction uses a palladium catalyst to link an organoboron reagent with an electrophile, such as an organohalide. In recent years, chemists have investigated nickel catalysts for these types of reactions because the metal is more abundant and less expensive. Neil K. Garg, Nicholas A. Weires, and Emma L. Baker found they could use a nickel catalyst to activate an amide’s C–N bond so that it undergoes cross-coupling with a boronic ester to produce an acyl C–C bond. Organic chemists have historically considered amides to be inert substrates, the authors note, but this work adds to a growing body of evidence that certain conditions can make them useful in organic synthesis. The new reaction tolerates a broad range of functional groups, including ketones and amines. The UCLA chemists used the transformation to create an antiproliferative agent (shown) on a gram scale.

Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment