Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Biological Chemistry

Gene Tweaking Boosts Spliceostatin Synthesis

Biosynthetic Engineering: Pfizer team reprograms engineered bacterium to increase yield of promising anticancer natural product

by Stephen K. Ritter
January 4, 2016 | A version of this story appeared in Volume 94, Issue 1

Pfizer scientists have reprogrammed an engineered microbe to improve the fermentation yield of the promising cancer drug thailanstatin A, a crucial step in its further development as a chemotherapy agent (Metab. Eng. 2015, DOI: 10.1016/j.ymben.2015.11.003). Thailanstatin A is a member of the spliceostatin family of bacterial natural products that interact with the spliceosome, the protein-RNA hybrid complex that is responsible for editing mRNA before the ribosome uses it to make proteins. Misregulation of mRNA splicing and mutations in the splicing machinery are associated with several cancers, and spliceostatins can put a halt to the problems. Alessandra S. Eustáquio and colleagues previously developed a biosynthetic pathway to make more potent and stable spliceostatins, but it was limited to producing 60 mg/L of thailanstatin A. The team found a bottleneck in the pathway, which they alleviated by increasing the expression of a gene to improve selective formation of a key hydroxyl group. The reprogramming helped increase production to 2.5 g/L, a level sufficient to support clinical trials.

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.