ERROR 1
ERROR 1
ERROR 2
ERROR 2
ERROR 2
ERROR 2
ERROR 2
Password and Confirm password must match.
If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)
ERROR 2
ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.
Direct trifluoromethylation of aromatic rings is an important synthetic tool for chemists. Although an abundance of new methods that use less harsh reagents, have improved product selectivity, and minimize waste have been reported during the past decade, cost-effective scalable processes have remained underdeveloped. Corey R. J. Stephenson and his coworkers at the University of Michigan in collaboration with process chemistry researchers at Eli Lilly & Co. may have found a solution. The team has designed a scaled up photochemical flow reactor that employs an inexpensive reagent combination under mild conditions to produce kilogram amounts of trifluoromethylated arenes and heteroarenes (Chem 2016, DOI: 10.1016/j.chempr.2016.08.002). The researchers use 4-phenylpyridine N-oxide as a redox trigger that is activated by a blue light-absorbing ruthenium bipyridine catalyst. This photoredox system decarboxylates trifluoroacetic anhydride to generate a trifluoromethyl radical that reacts with an arene or heteroarene. Stephenson and his colleagues are able to recrystallize the crude reaction products to high purity and they have extended the reaction scope to include perfluoroethyl and perfluoropropyl products.
Join the conversation
Contact the reporter
Submit a Letter to the Editor for publication
Engage with us on X