ERROR 1
ERROR 1
ERROR 2
ERROR 2
ERROR 2
ERROR 2
ERROR 2
Password and Confirm password must match.
If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)
ERROR 2
ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.
There’s no shortage of soft robots or actuators able to move themselves and other cargo, but these malleable machines tend to work slowly, says Nathalie Katsonis of the University of Twente. Researchers led by Katsonis and Stephen P. Fletcher of the University of Oxford want speedier energy delivery and decided to turn to liquid crystal chemistry. The researchers began with a thin film of an elastomeric liquid crystal featuring light-sensitive azobenzene moieties. By shining ultraviolet and visible light onto specific portions of the liquid crystal, the team created alternating stripes in the film such that half contained a well-aligned polymer, while the remaining stripes were more disordered. Then the researchers cut the striped film into ribbons and stuck two together, back-to-back. When illuminated with another dose of UV light, the alternating polymer stripes expanded at different rates, creating a strain that built up in the paired ribbons. The ribbons bent, twisted, and ultimately split apart, rapidly releasing their pent-up energy in a manner similar to the bursting seed pods of orchids and other plants (Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201611325). Katsonis believes this work and future efforts will help elucidate the molecular underpinnings of the complex, macroscopic motions seen in nature, but they could also help researchers make more powerful soft robots and microfluidic systems.
Join the conversation
Contact the reporter
Submit a Letter to the Editor for publication
Engage with us on X