ADVERTISEMENT
2 /3 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Biomaterials

Video: Scientists spin yarn from crab-shell and seaweed compounds

Threads draw strength from their chitin components and flexibility from alginate

by Kerri Jansen
January 22, 2020 | APPEARED IN VOLUME 98, ISSUE 4

Credit: Rafael Grande/ACS Sustainable Chem. Eng.

Biobased fibers made from renewable sources could be useful for a variety of applications, including textiles or medical devices. But it can be difficult to make long, continuous threads from these materials. Now, researchers from the University of São Paulo and Aalto University have made sturdy, flexible threads from a combination of chitin nanofibers extracted from crab shells and alginate, a compound found in seaweed (ACS Sustainable Chem. Eng. 2019, DOI: 10.1021/acssuschemeng.9b06099). The team studied how differences in the concentration of each component, the size of the nanofibers, and other variables affect the mechanical properties and spinnability of the final thread. With this information, the researchers were able to produce strong, flexible threads continuously, limited only by the volume of each component. Learn more at cenm.ag/biothread.

Subscribe to our YouTube channel to catch all our chemistry news videos.

The following is the script for the video.

Kerri Jansen (voice-over): These two droplets contain biomaterials that, when combined, cling together to form a sturdy and flexible thread. Scientists want to use biobased threads for a variety of applications, including high-performance textiles and tissue engineering. But first they’ll need to develop a simple, scalable production process. And it can be hard to make long, continuous threads with these biomaterials.

In this case, researchers wanted to make a fiber that combined the properties of chitin, a strong, antimicrobial material derived from crab shells, and alginate, a compound found in seaweed that is already used for wound healing and tissue engineering. When the researchers designed this material, they knew that the negatively charged alginate would be attracted to chitin nanofibers, which they had modified to have a positive charge. They found that when a solution of alginate contacts a suspension of chitin nanofibers, the alginate wraps around the chitin nanofibers, forming fibrils that align in parallel as the thread is drawn upward.

The researchers studied how variables like the concentration of each component and the size of the chitin nanofibers affected the properties of the composite thread. For example, they found that longer nanofibers made the thread stronger, but it also broke more frequently, possibly because the larger nanofibers more easily form clumps that can act as defects. Shorter nanofibers gave the thread more flexibility and made it easier to spin continuously. In lab tests, the team found that the composite threads were about as strong as threads made only from the crab-shell-derived chitin. But they had the bonus of flexibility from their alginate. The researchers plan to explore how further tweaks might improve the mechanical properties of their new threads.

Advertisement
X

Article:

This article has been sent to the following recipient:

Leave A Comment

*Required to comment