Advertisement

If you have an ACS member number, please enter it here so we can link this account to your membership. (optional)

ACS values your privacy. By submitting your information, you are gaining access to C&EN and subscribing to our weekly newsletter. We use the information you provide to make your reading experience better, and we will never sell your data to third party members.

ENJOY UNLIMITED ACCES TO C&EN

Biological Chemistry

Doubly Engineered Microbes For Biofuels

E. coli endowed with genes to digest cellulose and ferment sugars could streamline future biofuel production

by Stephen K. Ritter
December 5, 2011 | A version of this story appeared in Volume 89, Issue 49

A multi-institutional research team has succeeded in genetically engineering both biomass-degrading and biofuel-producing capabilities into a single microorganism. This so-called consolidated bioprocess eliminates the need for a separate enzymatic process to hydrolyze cellulose and hemicellulose, which has been a cost barrier to commercial production of fully renewable transportation fuels. Led by Gregory Bokinsky and Jay D. Keasling of the Department of Energy’s Joint BioEnergy Institute, the researchers first engineered Escherichia coli to produce a suite of enzymes that convert switchgrass into fermentable sugars. They pretreat the switchgrass with an ionic liquid to loosen the plant fibers and reduce lignin content. The team also endowed the bacterium with the genes needed to convert the sugars into different fuel feedstocks: One version produces butanol for gasoline, a second version produces fatty acid ethyl esters for diesel fuel, and a third version produces pinene for jet fuel (Proc. Natl. Acad. Sci. USA, DOI: 10.1073/pnas.1106958108). Bruce E. Dale, a biofuels expert at Michigan State University, gives the research team “full marks” for demonstrating an important proof of concept. But to achieve a commercial process, Dale adds, the digestion and fermentation capabilities of the E. coli strains require significant improvements.

Article:

This article has been sent to the following recipient:

0 /1 FREE ARTICLES LEFT THIS MONTH Remaining
Chemistry matters. Join us to get the news you need.