Fidgety-Enzyme Inhibitor Speeds Wound Healing | Chemical & Engineering News
Volume 93 Issue 15 | p. 36 | Concentrates
Issue Date: April 13, 2015

Fidgety-Enzyme Inhibitor Speeds Wound Healing

Molecular Medicine: Nanoparticle siRNA inhibits enzyme that slows advance of healing skin cells toward wounds
Department: Science & Technology
Keywords: small-interfering RNA, siRNA, wound healing

Researchers have designed a nanoparticle-based small interfering RNA (siRNA) that doubles the speed of wound healing in mice (J. Invest. Dermatol. 2015, DOI: 10.1038/jid.2015.94). David J. Sharp of Albert Einstein College of Medicine, in the Bronx, N.Y., who led the team behind the development, says he believes that if such an agent is approved after further testing, it could aid healing of cuts and burns, surgical incisions, and skin ulcers. Sharp and coworkers previously found that an enzyme called fidgetin-like 2 (FL2) causes skin cells to move more slowly toward wounds than they would be capable of doing if the enzyme weren’t holding things up. They therefore identified an siRNA that binds to FL2 mRNA, inhibiting translation of the expressed enzyme. The siRNA is degraded easily and doesn’t enter cells efficiently, so the researchers developed a nanoparticle delivery system that makes it more effective. The team found no evidence of toxicity in mice and plans to test the therapy on pigs. The technology has been licensed by MicroCures, in Santa Cruz, Calif., a company Sharp founded.

 
Chemical & Engineering News
ISSN 0009-2347
Copyright © American Chemical Society

Leave A Comment

*Required to comment